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Abstract—Sky-Drive is the first comprehensive simulation
platform that tightly integrates virtual reality (VR), multi-
agent interactions, and human-centered AI approaches for multi-
agent traffic simulation and human-centered autonomous agent
research. Distinct from existing platforms, Sky-Drive introduces
several key innovations: (a) a digital twin framework that
creates high-fidelity virtual replicas of transportation systems
for real-time monitoring and optimization; (b) a distributed
multi-agent architecture that enables synchronized simulation
across multiple terminals while maintaining precise real-time
interactions between autonomous vehicles (AVs), human-driven
vehicles (HVs), and pedestrians; (c) a multi-modal human-in-
the-loop framework that captures rich human behavioral data
through various sensors, including steering wheels, eye-tracking
cameras, and smartwatch sensors; (d) integration of fundamental
models for enhanced human-machine collaboration and person-
alized decision-making such as large language models (LLMs)
and vision language models (VLMs); (e) a novel human-AI bi-
directional mentor mechanism that facilitates effective knowledge
exchange between human drivers and AI-enabled autonomous
systems through both human feedback and domain knowledge
from transportation science; (f) a hardware-in-the-loop module
through ROS compatibility that enables direct verification of
autonomous driving algorithms on physical platforms. Sky-
Drive enables comprehensive research across various applications
including VR-enabled vulnerable road user (VRU)-AV interac-
tions, reinforcement learning-enabled autonomous driving policy
learning, customized long-tail scenario generation, LLM-enabled
personalized driving. Sky-Drive provides a unique environment
for accelerating the development of safe and efficient AVs,
while laying the groundwork for next-generation human-AI
collaborative transportation systems. The demo video and code
are available at: https://huang-zilin.com/Sky-Drive-website/.

Index Terms—Autonomous Vehicles, Large Language Models,
Human-in-the-Loop, Multi-Agent Simulation, Virtual Reality.

I. INTRODUCTION

AUTONOMOUS driving and related technologies have
made significant advancements in recent years, demon-

strating increasing maturity in perception, decision-making,
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and control capabilities [1]–[3]. As these technologies continue
to evolve, future transportation systems are expected to com-
prise complex combinations of intelligent agents, including
autonomous vehicles (AVs), human-driven vehicles (HVs), de-
livery robots, drones, and smart traffic signals. In this emerging
ecosystem, each agent must not only ensure its own safe and
efficient operation but also continuously align its behavior with
human preferences and societal norms through interactions
with various road users, including pedestrians and cyclists.
Consequently, future research must move beyond validating
single-vehicle performance to exploring social awareness and
human-AI collaboration in mixed traffic environments.

Validating autonomous driving technologies in real-world
environments presents substantial challenges, particularly re-
garding safety risks and the extensive testing required to
demonstrate reliability [4]–[6]. To address these challenges,
the autonomous driving community has developed a variety of
simulation platforms, such as CARLA [7], AirSim [8], SUMO
[9], Highway-Env [10], MetaDrive [11], SMARTS [12], Car-
Sim [13] and IPG CarMaker [14]. These platforms have
significantly accelerated development by providing controlled
testing environments. However, they face important limitations
in addressing the unique needs of future transportation re-
search. First, while existing platforms can simulate multiple
agents concurrently on a single computer, they generally
lack the capability to synchronize and run multiple agents
across distributed systems. This limitation restricts the study
of complex interactions where each intelligent agent requires
independent control and decision-making capabilities, a key
characteristic of future mixed traffic.

Second, most platforms offer limited support for human-
AI collaboration. Although they can collect human input,
they typically treat it as low-level control signals rather than
as high-level feedback for improving autonomous driving
algorithms. Moreover, they do not enable AI systems to assist
human drivers by providing real-time guidance, performance
feedback, or personalized training support. In contrast, human-
AI collaboration refers to a bidirectional process where human
drivers provide feedback not only as commands but as indica-
tions of preferences, situational understanding, and normative
behaviors, while autonomous systems in turn assist human
drivers by offering real-time guidance, performance feedback,
and personalized training. This bidirectional exchange enables
AI systems to continuously adapt to human needs and expec-
tations while simultaneously enhancing human driving per-
formance through intelligent support. Recent studies highlight
the importance of aligning autonomous systems with human
expectations [15]–[18], but existing platforms seldom facilitate
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Fig. 1. Overview of Sky-Drive’s key components and functionalities. (a) digital twin framework creating high-fidelity virtual replicas of transportation systems
through multi-source data integration; (b) distributed multi-agent architecture enabling synchronized simulation across multiple terminals for complex traffic
interactions; (c) multi-modal human-in-the-loop framework capturing comprehensive behavioral data through integrated sensor systems; (d) foundation models
integration leveraging LLMs and VLMs for enhanced human-machine collaboration; (e) human-AI bi-directional mentor mechanism facilitating knowledge
exchange between human drivers and autonomous systems; (f) hardware-in-the-loop module enabling direct validation through ROS compatibility.

real-time bidirectional knowledge exchange between humans
and AI. Additionally, the emergence of foundation models,
trained on diverse datasets and equipped with broad world
knowledge, offers new opportunities for capturing and utilizing
human knowledge. Nonetheless, current simulation platforms
primarily use foundation models for scenario generation rather
than for enabling active, bidirectional human-AI knowledge
exchange in decision-making processes.

While some simulation platforms have incorporated rein-
forcement learning (RL) capabilities to improve autonomous
driving policies, they remain primarily focused on optimizing
individual vehicle safety and efficiency metrics. However, it is
still necessary to incorporate social awareness into decision-
making processes to support the development of socially
aware autonomous systems. Social awareness refers to an
autonomous system’s ability to account for the effects of its
actions on surrounding road users and the overall transporta-
tion system, aiming to promote traffic flow stability, enhance
the comfort and safety of other participants, and enable
harmonious coexistence between autonomous vehicles and
human drivers in mixed traffic environments. In this context,
established knowledge from transportation science represents a
valuable resource. Specifically, validated traffic flow theories

and human behavior models, developed through decades of
research, could provide essential insights for designing au-
tonomous systems that achieve socially aware behaviors and
facilitate harmonious interactions with human drivers in mixed
traffic environments.

To address these challenges, we propose Sky-Drive, an in-
novative open-source simulation platform designed to advance
research in socially aware autonomous driving and human-AI
collaboration. Sky-Drive unifies scenario generation, system
simulation, data collection, algorithm training, and hardware
integration into a comprehensive platform, supporting dis-
tributed multi-agent operation and multi-modal human-in-the-
loop interaction. As illustrated in Fig. 1, Sky-Drive introduces
several key innovations:

• Sky-Drive introduces a distributed multi-agent architec-
ture that enables synchronized simulation across multiple
devices through a remote procedure call (RPC) network-
ing model. This design allows independent control of
agents on separate terminals while maintaining shared
environmental states, better reflecting future mixed traffic.

• Sky-Drive provides a multi-modal human-in-the-loop
framework that integrates diverse sensors, including steer-
ing wheels, virtual reality (VR) systems, cameras, and
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smartwatches, to capture rich human behavioral data. A
synchronized data processing pipeline correlates these
multi-modal streams, enabling detailed analysis of human
driving patterns and responses to complex scenarios.

• Sky-Drive implements an innovative human-AI collab-
oration mechanism comprising a Human as AI Mentor
(HAIM) module that incorporates human feedback and
domain knowledge to guide AI learning, and an AI as
Human Mentor (AIHM) module that provides real-time
guidance and personalized training to human drivers.

• To bridge the gap between simulation and reality, Sky-
Drive includes a digital twin framework that builds high-
fidelity virtual replicas of transportation systems by inte-
grating data collected from lab-developed AVs, roadside
sensors, traffic cameras, and historical records.

To further enhance Sky-Drive’s capabilities, two major
functionalities are planned:

• Sky-Drive will integrate large foundation models at both
the system and agent levels. At the system level, founda-
tion models will provide global observation and feedback
to optimize simulation dynamics. At the agent level, they
will enhance situational understanding and enable safer,
more socially aware, and personalized decision-making.

• Sky-Drive will incorporate a hardware-in-the-loop frame-
work via Robot Operating System (ROS) integration, en-
abling direct validation of autonomous driving algorithms
on physical vehicles and safe evaluation of human-AI
collaboration strategies without exposing users to real-
world risks.

The remainder of this paper is organized as follows: Section
II reviews related work in driving simulators. Section III in-
troduces Sky-Drive’s workflow. Section IV details Sky-Drive’s
features and technical implementation. Section V demonstrates
application examples. Section VI discusses planned future
enhancements. Finally, Section VII concludes the paper and
outlines future research directions.

II. RELATED WORKS

A. Driving Simulators

Driving simulation platforms have evolved significantly to
address the growing needs of autonomous vehicle research.
According to Li et al. [19], these simulators can be categorized
based on their primary functions and capabilities.

Comprehensive simulators provide end-to-end virtual envi-
ronments with complete road networks, diverse traffic agents,
pedestrians, and detailed sensor models. CARLA [7] and
LGSVL [20] represent prominent open-source examples in this
category, offering rich environments for testing autonomous
driving systems. Commercial solutions such as Nvidia Drive
Sim [21] and rFpro [22], alongside academic developments
including DeepDrive [23] and GarchingSim [24], provide sim-
ilar comprehensive capabilities. Another important category is
traffic flow simulators, which focus on modeling network-level
vehicle movements, traffic congestion, and large-scale traffic
scenarios. Notable examples include SUMO [9], Vissim [25],
Flow [26], and CityFlow [27]. Recent developments combine

SUMO’s traffic modeling with 3D simulators such as CARLA
to merge scalability with realism.

Sensory data simulators, such as AirSim [8] and Sim4CV
[28], are designed to generate high-fidelity sensor outputs for
perception systems. These functionalities are increasingly be-
ing integrated into comprehensive simulators while maintain-
ing their critical role in AV perception testing. Driving policy
simulators provide configurable environments for evaluating
decision-making algorithms. Examples include Highway-Env
[10], TORCS [29], SUMMIT [30], MACAD [31], SMARTS
[12], and MetaDrive [32]. Additionally, recent data-driven sim-
ulators such as Waymax [33], ScenarioNet [34], and Nocturne
[35] leverage real-world datasets to generate socially relevant
traffic scenarios. Vehicle dynamics simulators, including Car-
Sim [13], IPG CarMaker [14], and Gazebo [36], specialize
in accurately modeling vehicle physics, such as suspension
responses and tire-road interactions, which are essential for
validating control algorithms under realistic conditions.

While existing platforms offer valuable simulation capa-
bilities, certain challenges remain in supporting future trans-
portation research. As shown in Tab. I, most simulators are
designed to run on single devices, limiting their ability to
model distributed multi-agent scenarios requiring independent
processing. Moreover, current platforms offer limited support
for socially-aware algorithms that must consider complex
interactions with diverse road users. Sky-Drive is designed
to address these challenges by introducing a distributed archi-
tecture that enables synchronized simulation across multiple
terminals, combined with a comprehensive digital twin frame-
work for high-fidelity environmental replication.

B. Human–AI Collaboration Environments

Several simulation platforms have made notable contribu-
tions to human-AI collaboration in the context of autonomous
driving. NVIDIA’s DRIVE Sim and Omniverse platform [38]
facilitates collaboration through physics-based synthetic data
generation for training autonomous systems. Nevertheless,
their approach primarily supports one-way knowledge transfer,
where simulated scenarios inform AI models, rather than
enabling bidirectional knowledge exchange. Applied Intuition
offers human-in-the-loop testing capabilities that allow hu-
man operators to validate the decisions made by autonomous
systems, but its framework is primarily designed for valida-
tion purposes, rather than fostering continuous collaborative
learning [39]. MORAI provides digital twin environments that
visualize AI decision-making processes for human operators,
yet its interaction mechanisms are limited to basic feedback
collection, lacking the integration of knowledge for mutual
learning [40].

More specialized platforms have attempted to advance
human-AI collaboration. The VISTA simulation system de-
veloped by MIT enables domain adaptation between virtual
and real environments, but it mainly addresses perception
tasks rather than knowledge exchange mechanisms [41]. The
GAMMA framework generates mixed-reality traffic data that
incorporates aspects of human driving behavior, though it lacks
explicit mechanisms for integrating human expertise into the
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TABLE I
COMPARISON OF REPRESENTATIVE SIMULATORS WITH SKY-DRIVE

Distributed Digital Twin Hardware- Traffic Flow AI Framework Human-in-the-
Multi-agent Simulation Environment in-the-Loop Modeling Integration loop Interface

Closed Source

Nvidia Drive Sim [21] - ✓ ✓ - ✓ ✓
rFpro [22] - ✓ ✓ - - ✓
CarSim [13] - - ✓ - - ✓
Matlab [37] - ✓ ✓ - ✓ ✓

Open Source

DeepDrive 2.0 [23] - - - - ✓ -
GarchingSim [24] ✓ - ✓ - ✓ ✓
CARLA [7] - ✓ ✓ - ✓ ✓
SUMO [9] - ✓ ✓ ✓ - -
Flow [26] - - - ✓ ✓ -
CityFlow [27] - - - ✓ ✓ -
TORCS [29] - - - - ✓ -
SUMMIT [30] - ✓ - - ✓ -
MACAD [31] - - - - ✓ ✓
MetaDrive [32] - ✓ - - ✓ ✓
SMARTS [12] - - - - ✓ -
Nocturne [35] - ✓ - ✓ ✓ -
Waymax [33] - ✓ - ✓ ✓ -
Gazebo [36] - ✓ - - - ✓

Sky-Drive (Ours) ✓ ✓ ✓ ✓ ✓ ✓

Note: The “Distributed Multi-agent Simulation” functionality in this table refers to the capability of simulators to synchronize and run
multiple agents (e.g., AVs, HVs, and pedestrians) across different computers in real-time simulations. This is distinct from simply running
multiple agents concurrently on a single computer, which most simulators can accomplish.

AI learning process [42]. Wayve’s LINGO architecture makes
significant strides by providing natural language explanations
for AI decisions, thereby enhancing transparency in human-
AI interaction [43]. SafeMod introduces bidirectional planning
through large language models, incorporating human-like rea-
soning patterns into autonomous decision-making [44]. The
SurrealDriver framework leverages large language models to
generate realistic driving behaviors that align with human
expectations in urban contexts [45]. DarwinAI’s GenSynth
platform demonstrates how human designers and AI can
collaborate to accelerate the development of neural networks
for autonomous driving applications [46].

Despite these advancements in collaborative interfaces, ex-
isting platforms face several limitations in enabling human-
AI knowledge exchange. Current platforms generally lack
mechanisms for the continuous integration of human feedback,
resulting in open-loop, rather than closed-loop, learning sys-
tems. Few platforms are capable of comprehensive multimodal
data collection from human operators, which is essential for
gaining a deeper understanding of driving patterns and improv-
ing AI’s adaptation to human behaviors. Sky-Drive addresses
these limitations through its HAIM and AIHM modules, its
multi-modal human-in-the-loop architecture, and its closed-
loop learning mechanisms that continuously integrate human
expertise into AI development.

III. SKY-DRIVE WORKFLOW

A. Overview

Sky-Drive introduces a modular architecture designed as an
integrated workflow for studying socially-aware autonomous
driving and human-AI collaboration. As illustrated in Fig. 1,
the platform’s workflow seamlessly connects four currently
implemented functional modules, with two additional modules
planned for future development.

The workflow begins with the digital twin framework, which
feeds high-fidelity virtual replicas of transportation systems
into the distributed multi-agent architecture. This architecture
then enables synchronized simulation across multiple devices,
providing the foundation for complex interactions between
autonomous agents. The simulation environment created by
these two modules serves as the testing ground for the multi-
modal human-in-the-loop framework, which captures com-
prehensive behavioral data from human participants. This
data is subsequently processed and utilized by the human-AI
collaboration mechanism to facilitate knowledge exchange be-
tween human and autonomous systems. The foundation models
integration will enhance capabilities at both system and agent
levels, providing global observation for system performance
feedback while helping individual agents better understand
human behavior patterns identified through the human-in-
the-loop framework. The hardware-in-the-loop module will
connect with the digital twin framework to enable direct
validation of algorithms on physical platforms, completing the
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Fig. 2. Workflow of Sky-Drive. (a) scenario generation & data collection through CARLA-based synthetic environments and digital twin integration of
real-world traffic data; (b) simulation & algorithm training enabled by distributed multi-agent architecture and human-AI bi-directional mentor mechanism;
(c) hardware integration & testing utilizing ROS compatibility for direct validation of autonomous driving algorithms on physical platforms.

cycle by feeding real-world performance data back into the
simulation environment.

B. Workflow

The workflow of Sky-Drive, shown in Fig. 2, consists of
three primary stages that form a continuous feedback loop:

1) Scenario Generation & Data Collection: As depicted in
Fig. 2(a), this stage employs two complementary approaches
to ensure comprehensive scenario coverage: (i) Sky-Drive
leverages CARLA and Unreal Engine to generate customizable
urban environments with detailed road networks, traffic rules,
and environmental conditions, enabling controlled testing of
specific driving scenarios. (ii) The digital twin framework
imports real-world data through multi-source integration. This
includes high-precision maps collected by lab-developed au-
tonomous vehicles, open-source data, and real-world traffic
data collection. The collected data undergoes sophisticated
categorization and twinning processes to create digital replicas
of physical environments.

Through this dual approach, Sky-Drive achieves both pre-
cise controllability in synthetic scenarios and high fidelity
in recreating real-world driving conditions, providing re-
searchers with flexible testbeds for developing and validating
autonomous driving algorithms.

2) Simulation & Algorithm Training: As shown in Fig.
2(b), this stage processes the generated scenarios through an
integrated learning pipeline with four interconnected com-
ponents: (i) The distributed multi-agent architecture enables

the concurrent operation of multiple agents across different
terminals. This allows independent control of agents on sepa-
rate devices while maintaining synchronized simulation, facil-
itating complex traffic interactions in a shared environment.
(ii) The Human-in-the-Loop component integrates multiple
human participants into a simulation that directly captures
human behavior through an immersive interface. This allows
researchers to study human responses in a variety of traffic
settings. (iii) Sky-drive will integrate LLMs/VLMs to enhance
simulation capabilities. These models will facilitate natural
communication between human participants and autonomous
systems for more intuitive interaction and knowledge transfer.
(iv) This human-AI collaboration mechanism integrates human
feedback and domain knowledge with AI training processes,
creating a continuous learning loop where humans inform AI
systems provide feedback to human operators.

The integration of these components produces trained mod-
els and comprehensive simulation data that serve as inputs for
the hardware integration and testing stage.

3) Hardware Integration & Testing: As illustrated in Fig.
2(c), the final stage bridges simulation and physical de-
ployment through two key components: (i) While the full
hardware-in-the-loop module is planned for future develop-
ment, the current architecture already supports connections to
external hardware through standardized ROS interfaces. The
lab-developed Ford E-transit electric van serves as the primary
testbed, equipped with dashboard monitors, power modules,
and a computing rack for algorithm deployment. (ii) Sky-Drive
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precise real-time interactions between AVs, HVs, and pedestrians through a sophisticated RPC networking model and Socket.IO-based communication platform,
supporting comprehensive data collection and real-time analysis of multi-agent behaviors.

also supports the testing of vehicle-to-object (V2X) commu-
nication protocols, enabling evaluates cooperative perception
and decision-making capabilities across multiple vehicles and
infrastructure elements. This testing is essential for validating
the performance of autonomous systems in complex traffic en-
vironments that require coordination between multiple agents.

This closed-loop workflow enables systematic development
and validation of socially-aware autonomous driving systems
and human-AI collaboration mechanisms, from initial concept
testing through to real-world deployment, while maintaining
safety and reliability throughout the process.

IV. SKY-DRIVE FEATURES

A. Distributed Multi-agent Architecture

Sky-Drive introduces a novel distributed multi-agent ar-
chitecture that enables synchronized simulation of multiple
independently operating agents across different computing
devices. As illustrated in Fig. 3, this architecture creates a
comprehensive simulation environment where AVs, HVs, and
pedestrians can interact in realistic traffic scenarios while being
controlled from separate terminals.

1) System Architecture: Sky-Drive’s core lies in a sophis-
ticated RPC networking model built upon CARLA using
the rpclib library. This implementation extends CARLA’s
proven vehicle control system while introducing crucial en-
hancements for distributed multi-agent simulation.

As shown in Fig. 3(c), Terminal 1 functions as the host
(server) that maintains the global simulation environment,
while Terminals 2-4 operate as clients controlling different

agent types. Each terminal in the network can independently
control its corresponding agent through various input devices
while maintaining seamless interaction with other agents in
the shared environment. The host terminal manages scene cus-
tomization and map generation through CARLA and feeds this
information to the distributed terminals. As illustrated in Fig.
3(a), the scene generation component creates detailed virtual
environments with customizable traffic conditions, weather
patterns, and road infrastructure. This architecture supports
multiple agent types simultaneously, including AI-controlled
AVs, HVs with steering wheel and keyboard interfaces, pedes-
trians controlled through VR systems, and rule-based AVs
following predefined behaviors.

2) Communication Infrastructure: The communication in-
frastructure employs a dual-port TCP system on each terminal,
enabling robust bidirectional data exchange between the host
and clients. To achieve optimal performance in this distributed
architecture, Sky-Drive implements a hybrid networking ap-
proach. For time-critical operations, we utilize a dedicated
local area network (LAN) configured with high-performance
switches and Ethernet connections. This setup achieves re-
markably low latency, measured at 0.3 milliseconds, enabling
smooth real-time interactions among agents. For scenarios
requiring broader network coverage and geographically dis-
tributed research (as shown in Fig. 3(d) with locations at
Purdue University and University of Wisconsin-Madison),
the architecture employs virtual LAN (VLAN) configurations
that maintain communication efficiency while extending the
platform’s reach.
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3) Real-time Monitoring Platform: A key component of
Sky-Drive’s distributed architecture is its comprehensive mon-
itoring and data management system. Complementing the core
networking infrastructure, Sky-Drive developed a Socket.IO-
based communication platform that monitors the real-time
transmission of agent data, including position coordinates, ve-
locity metrics, live video feeds, and sensor readings. As shown
in Fig. 3(b), the platform features a web-based monitoring sys-
tem that provides real-time visualization of all agent activities.
This platform streams all data to a centralized system where
agent interactions can be monitored and analyzed in real time.
All simulation data, including agent states, environmental
conditions, and interaction events, are automatically logged
to a centralized database, facilitating comprehensive post-
simulation analysis and scenario reproduction.

This distributed multi-agent architecture significantly ad-
vances autonomous driving research beyond existing plat-
forms, such as Nocturne [35], MetaDrive [11], and Waymax
[33], which primarily focus on simplified multi-agent interac-
tions on a single machine. By enabling truly distributed control
of multiple agents while maintaining precise synchronization
across geographical locations, Sky-Drive creates a uniquely
powerful environment for studying the complex social dynam-
ics of future transportation systems.

B. Multi-modal Human-in-the-loop Framework

Sky-Drive provides a multi-modal human-in-the-loop
framework that captures, synchronizes, and interprets rich
behavioral signals from human participants.

1) Eye Tracking: Sky-Drive provides an immersive virtual
reality experience through a custom-developed VR interface
built on top of the Unreal Engine. Participants engage in
the simulation using an HTC Vive Pro Eye headset, which
supports full 6-DoF head tracking via SteamVR and integrated
eye tracking via the SRanipal SDK. Our system captures high-
frequency (up to 120 Hz) behavioral signals including 3D
gaze vectors, pupil positions and diameters, eye openness,
and fixation points. These data streams are essential for
analyzing driver attention distribution, situational awareness,
and cognitive state during complex driving tasks.

2) Voice Interaction: Sky-Drive supports voice commands
as an explicit behavioral input modality. Spoken language
is transcribed via Whisper, an OpenAI automatic speech
recognition (ASR) model, and then interpreted by LLMs such
as GPT-4. These models extract driver intent and sentiment
from natural language input, whether structured (“slow down
at the next intersection”) or informal (“too fast”). LLMs map
these expressions to semantic driving directives or policy
preferences, which are then translated into model guidance
signals or policy constraints

3) Facial Expression Recognition: A high-resolution in-
cabin camera captures facial micro-expressions in real
time. Sky-Drive employs a convolutional neural network-
based expression classification model (e.g., EfficientFace or
MobileNet-V2) trained on affective datasets to recognize
expressions such as stress, confusion, or satisfaction. These
cues serve as implicit indicators of driver state and comfort,

which can modulate AI policy updates or trigger real-time
interventions in the AIHM framework.

4) Physiological Signal Monitoring: Physiological states
such as stress or alertness are inferred through biometric
signals collected by wearable devices. Sky-Drive integrates
the Garmin vı́voactive 5 smartwatch to monitor heart rate
and heart rate variability (HRV) in real time. This device
provides continuous physiological data synchronized with
other behavioral inputs, offering valuable indicators of driver
arousal, cognitive workload, and fatigue. These signals are
timestamp-aligned with other modalities and provide an addi-
tional implicit channel for modeling driver state and adapting
AI behavior accordingly.

5) Steer Wheel: To support realistic interaction, the ego ve-
hicle is equipped with a Logitech G920 racing wheel and pedal
system, with force feedback enabled through the open-source
LogitechWheelPlugin. All inputs—steering, throttle, braking,
and signaling—are logged in parallel with gaze and head pose
data and are compatible with CARLA’s ScenarioRunner for
scenario-based experiments.

This framework provides the technical backbone for the
human-AI collaboration mechanism, transforming traditional
user input into actionable and structured knowledge for col-
laborative decision-making.

C. Human-AI Collaboration Mechanism

Sky-Drive implements an innovative human-AI collabora-
tion mechanism that establishes effective knowledge exchange
between humans and AI-enabled autonomous systems. This
mechanism consists of two primary frameworks: Human as
AI Mentor (HAIM) and AI as Human Mentor (AIHM).

1) Human as AI Mentor: In the HAIM framework, humans
act as real-time mentors to AI-enabled autonomous vehi-
cles, guiding AI behavior through rich, multi-source human
knowledge. This knowledge consists of two complementary
components: (i) individual behavioral knowledge, which in-
cludes both explicit behaviors (e.g., takeover actions, voice
commands, touchscreen interactions) and implicit behaviors
(e.g., facial expressions, eye movements, physiological sig-
nals) collected from human drivers through Sky-Drive’s multi-
modal human-in-the-loop framework; and (ii) domain knowl-
edge from transportation science, which includes validated
principles derived from decades of research, such as car-
following models and lane-change behavior theories.

Sky-Drive adopts an RL framework enhanced by human
preference modeling and physics-informed priors to integrate
this dual-source human knowledge into the AI learning pro-
cess. Rather than relying on manually crafted reward functions,
Sky-Drive formulates the learning problem as preference-
based policy optimization. Specifically, individual behavioral
knowledge is incorporated as guidance signals during learning.
For example, frequent human takeovers in specific contexts
(e.g., near intersections or during aggressive merging) are
interpreted as indicators of suboptimal AI behavior. These
signals are used to define implicit cost functions or to prioritize
policy adjustments via human-aligned trajectory comparisons.
Meanwhile, domain knowledge from transportation models
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(e.g., IDM and MOBIL) is embedded into the learning frame-
work as safety constraints and behavioral baselines, ensuring
that learned policies remain physically plausible, stable, and
socially compliant. This approach accelerates policy conver-
gence, reduces unsafe exploration, and fosters trust between
human drivers and autonomous systems.

2) AI as Human Mentor: The AIHM framework comple-
ments HAIM by allowing AI systems to act as real-time
coaches and trainers for human drivers. It utilizes physics-
enhanced residual learning (PERL) [47] to generate optimal
driving paths that account for traffic dynamics, safety con-
straints, and personalized behavior models. These reference
paths serve as a dynamic instructional baseline for the human
driver, visualized in real time via an in-vehicle display or VR
interface and updated continuously based on the driver’s ongo-
ing performance. AIHM evaluates human driver performance
through multi-dimensional metrics, including path adherence,
reaction time, control smoothness, and situational awareness.
Personalized feedback is delivered via visualizations (e.g., 3D
paths, heat maps), annotated replay, and AI-generated verbal
summaries.

A key innovation of AIHM is the integration of genera-
tive AI for adaptive scenario creation. Based on the driver’s
recent performance, the framework identifies areas requiring
improvement—such as emergency braking, lane discipline,
or roundabout negotiation—and procedurally generates cus-
tomized training scenarios to target those weaknesses. In
addition, the AIHM framework uses real-time physiological
and cognitive data to dynamically modulate the level of
guidance. For example, if the system detects elevated heart
rate and frequent steering correction—indicating stress or
confusion—it can proactively reduce scenario complexity, sim-
plify instructions, or offer reassurance. Conversely, when the
driver exhibits proficiency, the system can gradually increase
challenge levels to promote growth.

D. Digital Twin Framework

The digital twin framework creates high-fidelity virtual
replicas of transportation systems through sophisticated multi-
source data integration. This framework serves as the environ-
mental backbone of the Sky-Drive platform, enabling data-
driven scenario generation, human-in-the-loop simulation, and
hybrid validation across both simulated and physical domains.

The framework comprises three primary components that
work together to create accurate digital replicas. The multi-
source data integration layer combines diverse data streams
from roadside units, traffic cameras, historical traffic records,
and high-definition mapping data collected by Lab-developed
AVs equipped with LiDAR and cameras. These data sources
undergo temporal alignment and spatial correlation to en-
sure consistency across all inputs. The virtual environment
component, built on Unreal Engine, serves as a dynamic
visualization platform that provides real-time 3D rendering of
traffic conditions. This environment processes incoming sensor
data using computer vision algorithms to detect and track road
users for both real-time rendering and trajectory prediction
[48]. The edge-computing architecture processes data locally

through roadside units equipped with sensors that monitor
traffic flow, vehicle behavior, and environmental conditions,
performing preliminary data processing before transmitting
relevant information to the central system.

Sky-Drive has successfully implemented a pilot deployment
of this digital twin system on Wisconsin’s Flex Lane along the
Beltline in Dane County. This implementation demonstrates
the framework’s ability to process real-time traffic data, gener-
ate accurate state predictions, and provide decision support for
traffic management by integrating data from Wisconsin DOT’s
traffic cameras, autonomous vehicle surveys, and historical
databases.

V. SKY-DRIVE APPLICATION CASE

A. VR-based AV-VRU Interaction

Sky-Drive provides a platform for studying complex in-
teractions between AVs and vulnerable road users (VRUs)
through its advanced VR-enabled simulation capabilities. The
platform’s distributed multi-agent architecture enables realistic
modeling of dynamic traffic scenarios. It allows independent
control of multiple agents across different devices while main-
taining precise synchronization. This capability is particularly
valuable for investigating safety-critical interactions between
AVs and VRUs, which are challenging to study in real-world
environments due to safety concerns.

As shown in Fig. 4(a), we conducted a case study focused on
right-turn conflicts at unsignalized intersections—a scenario
frequently associated with accidents in urban environments.
This study leveraged Sky-Drive’s synchronized multi-terminal
architecture in a novel experimental setup where human par-
ticipants experienced the scenario from the pedestrian’s per-
spective through immersive VR, while researchers controlled
an AV making right turns from a separate terminal. During
each interaction, Sky-Drive captured multimodal behavioral
data from both the AV and the pedestrian. The VR recorded
3D gaze vectors, eye fixations, and reaction times from the
pedestrian, while simultaneously logging control signals, de-
celeration profiles, and trajectory predictions from the AV.

This integrated setup enables researchers to study not only
the physical outcomes of AV–VRU interactions (e.g., success-
ful yielding, near-misses), but also the cognitive and emotional
dimensions of human response.

B. HAIM-based Deep Reinforcement Learning

Sky-Drive’s human-AI collaboration mechanism provides a
HAIM framework for learning autonomous driving policies
directly from human feedback. To demonstrate the platform’s
capabilities, as shown in Fig. 4(b), we implemented HAIM-
DRL [49], a reward-free RL framework that infers driver
preferences from control takeovers. Unlike conventional RL
methods that rely on handcrafted reward functions, HAIM-
DRL leverages human interventions to guide policy optimiza-
tion.

Sky-Drive implements HAIM-DRL by detecting and record-
ing steering takeovers while synchronizing with vehicle state
and scene context. The platform’s multi-agent simulation
environment allows HAIM-DRL to operate in traffic flow
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Fig. 4. Demonstration of Sky-Drive’s key applications. (a) VR-enabled interaction studies between autonomous vehicles and vulnerable road users; (b) RLHF-
enabled autonomous driving policy learning through HAIM-DRL and PE-RLHF frameworks; (c) VLM-RL framework integrating vision-language models
with reinforcement learning for safe driving; (d) Customized long-tail scenario generation using CurricuVLM for personalized training; (e) Transportation
domain knowledge integration through physics-enhanced reinforcement learning; (f) Accident data replay framework for systematic traffic incident analysis;
(g) LLM-based system enabling personalized autonomous driving.

scenarios, where humans take over implicitly dissatisfied with
agent behavior, such as when the AV merges too aggressively
or follows too closely. By constructing human-aligned prefer-
ence comparisons between pre- and post-takeover trajectories,
the agent learns to avoid human-disapproved behaviors and
improve its driving policy accordingly.

Mathematically, we can define the HAIM framework as
follows: aligning AI behavior with human preferences as
closely as possible:

π∗
AV = argmin

πAV
Est∼dπAV

[L (πAV(· | st), πhuman(· | st))] , (1)

where dπAV represents the state distribution induced by the
agent’s policy πAV, and L(·, ·) is a measure of discrepancy
(e.g., KL divergence). By minimizing this discrepancy over
the state distribution, the AI agent is encouraged to learn
from human knowledge and align its behavior with human
preferences.

HAIM-DRL utilizes takeover actions as human knowledge
input. A human expert acts as a mentor to the AI agent (AI-
enabled AV), intervening and taking control of the vehicle

in hazardous situations, demonstrating correct maneuvers to
avoid potential accidents. To integrate data from agent ex-
ploration and human takeover, HAIM-DRL designs a switch
function T . Let T (at) = 1 indicate that the human driver takes
over the control, and T (at) = 0 otherwise. We represent this
process as follows:

T (st, at, πhuman) =

{
(aAV

t , 0), if takeover;
(ahuman

t ∼ πhuman(· | st), 1), otherwise.
(2)

The actual trajectory during the training process is deter-
mined by the mixed behavior policy:

πmix(a | s) = πAV(a | s)(1−I(s, a))+πhuman(a | s)F (s), (3)

where F (s) =
∫
a′ /∈Aη(s)

πAV(a
′ | s) da′ represents the proba-

bility of the agent selecting an action that would be rejected
by the human.

The overall learning objective of HAIM-DRL is specifically
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TABLE II
THE PERFORMANCE OF PPO/HACO/HAIM-DRL METHODS IN THE CARLA SIMULATOR.

Method Test Safety Violation Test Return Test Disturbance Rate Test Success Rate Train Samples

PPO 80.84 1591.00 - 0.35 500,000
HACO 12.14 1578.43 0.0137 0.35 8,000

HAIM-DRL 11.25 1590.85 0.0121 0.38 8,000

designed as:

max
π

E
[
ψQ̂(st, a

AV
t )− α log πAV(a

AV
t | st; θ)− βQEX(st, a

AV
t )− φQIM(st, a

AV
t )

]
.

(4)
The first term is defined as

Q̂(st, a
AV
t ) = min

ϕ
E(st,aAV

t ,ahuman
t ,I(st,aAV

t ))∼B

[
I(st, a

AV
t )

(
Q̂(st, a

AV
t ;ϕ)

−Q̂(st, a
human
t ;ϕ)

)]
which ensures that the AI agent mimics human-preferred

behavior by minimizing the value discrepancy between its own
actions and those demonstrated by a human mentor. The fourth
term is defined as

QIM(st, a
AV
t ) = C IM(st, a

AV
t )+γEst+1∼B,at+1∼πAV(·|st+1)

[
QIM(st+1, a

AV
t+1)

]
where C IM(st, a

AV
t ) represents the traffic disturbance cost, and

I(st, a
AV
t ) is an indicator function that equals 1 if the human

rejects the action aAV
t , and 0 otherwise.

As evidenced by Fig. ?? and Table II, HAIM-DRL method
is successfully implemented in the Sky-Drive, where it exhibits
superior performance, particularly in safety violation, success
rate, and disturbance rate. The success of this implementation
underscores Sky-Drive’s ability to support closed-loop human-
AI training and validate human-guided policies in simulated
environments.

C. Physics-enhanced Reinforcement Learning with Human
Feedback

Sky-Drive’s human-AI collaboration mechanism also in-
tegrates the Physics-enhanced Reinforcement Learning with
Human Feedback (PE-RLHF) framework for developing trust-
worthy autonomous driving policies. As shown in Fig. 4(c), we
implemented PE-RLHF, a novel framework that synergistically
combines human feedback with physics knowledge from traf-
fic flow models to ensure safe and efficient driving decisions.

Unlike traditional RLHF methods that may falter with
imperfect human feedback, PE-RLHF establishes a trustwor-
thy safety performance lower bound through well-established
traffic flow models. Sky-Drive implements PE-RLHF by in-
corporating a sophisticated Physics-enhanced Human-AI (PE-
HAI) collaborative paradigm where three policies interact: a
human policy (πhuman), a physics-based policy (πphy) derived
from traffic flow models (IDM-MOBIL), and an AV policy
(πAV).

The platform detects human takeovers while simultaneously
evaluating actions generated by both the human and physics-
based models. During intervention, an action selection mech-
anism determines which action to execute based on estimated
Q-values:

ahybrid = Tselect(s) =

{
ahuman, if Mean

[
Ea∼πhuman(·|s)Q

ϕ(s, a)− Ea∼πphy(·|s)Q
ϕ(s, a)

]
≥ εselect

aphy, otherwise
(5)

This ensures that the system always executes the action
with higher expected value, establishing a performance floor
guaranteed by interpretable physics-based models, even when
human feedback quality deteriorates.

The overall learning objective of PE-RLHF is formulated
as:

max
π

E
[
ψQ̂(st, a

AV
t )− α log πAV(a

AV
t |st; θ)− βQint(st, a

AV
t )

]
(6)

where Q̂(st, a
AV
t ) is a proxy value function representing

human preferences, the entropy term encourages exploration,
and Qint(st, a

AV
t ) minimizes the need for human intervention.

Sky-Drive’s multi-agent simulation environment enables
PE-RLHF to operate effectively in complex traffic scenarios.
The platform’s digital twin framework provides realistic envi-
ronments to test the physics-based policies, while the multi-
modal human-in-the-loop framework captures nuanced human
feedback through various input channels.

PE-RLHF demonstrates exceptional performance across key
metrics when implemented in Sky-Drive, achieving a 91%
reduction in safety violations compared to traditional RL
methods while maintaining high success rates and trajectory
efficiency. Particularly impressive is its ability to perform
complex maneuvers such as overtaking and navigating around
obstacles, which traditional physics-based models struggle
with.

Tab. III shows the performance comparison of PE-RLHF
with different physics-based model combinations and the stan-
dalone IDM-MOBIL model. In Stage I, we observe that PE-
RLHF consistently outperforms the standalone IDM-MOBIL
model across all configurations. The full PE-RLHF (with IDM-
MOBIL) achieves the highest episodic return of 391.48 and
a success rate of 0.85, compared to 206.30 and 0.31 for the
standalone IDM-MOBIL model, respectively. This substantial
improvement demonstrates the effectiveness of integrating RL
with physics-based models. Moving to Stage II, we note
that all PE-RLHF variants exhibit lower safety violations
compared to the standalone IDM-MOBIL model. The full PE-
RLHF configuration achieves the lowest safety violation of
0.47, indicating superior safety performance. Additionally, PE-
RLHF variants consistently achieve greater travel distances,
with the full configuration reaching 177.00m compared to
108.56m for the standalone model. In Stage III, the full PE-
RLHF achieves the highest travel velocity (21.85km/h) and
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TABLE III
PERFORMANCE COMPARISON OF PE-RLHF WITH DIFFERENT PHYSICS-BASED MODEL COMBINATIONS.

Method Driving Operation
Training

Testing

Stage I Stage II Stage III
Total Safety

Violation ↓ Episodic
Return ↑ Success Rate

(%) ↑ Safety
Violation ↓ Travel

Distance ↑ Travel
Velocity ↑ Total Overtake

Count ↑

IDM-MOBIL Longitudinal & Lateral - 206.30 ±35.23 0.31 ±0.15 0.49 ±0.08 108.56 ±55.23 19.78 ±2.67 0 ±0

PE-RLHF (without) - 39.45 ± 12.32 302.67 ± 21.88 0.73 ± 0.05 1.48 ± 0.43 138.23 ± 4.28 16.58 ± 0.96 6.14 ± 1.12

PE-RLHF (with IDM) Longitudinal only 28.79 ± 9.97 348.52 ± 19.67 0.79 ± 0.03 0.98 ± 0.29 149.87 ± 4.10 18.92 ± 0.94 7.83 ± 1.03

PE-RLHF (with MOBIL) Lateral only 21.56 ± 8.54 368.11 ± 18.45 0.81 ± 0.04 0.74 ± 0.19 159.34 ± 3.14 20.43 ± 0.51 9.76 ± 1.17

PE-RLHF (with IDM-MOBIL) Longitudinal & Lateral 16.61 ± 9.96 391.48 ± 20.47 0.85 ± 0.04 0.47 ± 0.01 177.00 ± 3.74 21.85 ± 0.02 16.33 ± 4.61

total overtake count (16.33), significantly outperforming the
standalone IDM-MOBIL model (19.78 and 0, respectively).

Interestingly, we observe that incorporating either longitu-
dinal (IDM) or lateral (MOBIL) components of the physics-
based model into PE-RLHF yields improvements over the
variant without any physics-based model. Yet, the combination
of both IDM and MOBIL produces the best results across all
metrics, suggesting a synergistic effect when integrating both
longitudinal and lateral control models. It is worth noting that
while the standalone IDM-MOBIL model provides a baseline
level of performance, it struggles with overtaking maneuvers,
as evidenced by its zero overtake count. In contrast, all PE-
RLHF variants demonstrate the ability to perform overtaking,
with the full configuration showing the highest proficiency
in this regard. The results demonstrate that the PE-RLHF
framework not only leverages the safety guarantees provided
by these models but also enhances their performance through
learning.

The integration of physics knowledge into the learning
process uniquely positions PE-RLHF to address the challenges
of safety-critical autonomous driving scenarios, making it an
invaluable addition to Sky-Drive’s human-AI collaboration
capabilities.

D. VLM-RL
Sky-Drive’s human-AI collaboration mechanism also sup-

ports the VLM-RL framework, as shown in Fig. 4(c). VLM-
RL integrates pre-trained Vision-Language Models (VLMs)
with Reinforcement Learning (RL) to generate reward signals
using image observation and natural language goals for safe
autonomous driving.

The core of VLM-RL is the Contrasting Language
Goal (CLG)-as-reward paradigm, which leverages pre-trained
VLMs to measure semantic alignment between driving states
and contrasting language descriptions. Specifically, positive
language goals (e.g., “the road is clear with no car accidents”)
and negative language goals (e.g., “two cars have collided with
each other on the road”) are used to guide the learning process,
providing more informative and context-aware rewards.

We implement VLM-RL by first encoding RGB images
through the CLIP vision encoder and language goals through
the text encoder to obtain their respective embeddings in a
shared latent space. The reward is computed as:

RCLG(s) = α·sim(V LMI(ψ(s)), V LML(lpos))−β·sim(V LMI(ψ(s)), V LML(lneg))
(7)

where sim(·, ·) denotes the cosine similarity between em-
beddings, and α, β > 0 are weighting factors. This formulation
encourages the agent to seek states similar to the positive goal
while avoiding states similar to the negative goal.

To enhance learning stability, we introduce a hierarchical
reward synthesis approach that combines CLG-based semantic
rewards with vehicle state information, providing comprehen-
sive and stable reward signals. Additionally, a batch-processing
technique is employed to optimize computational efficiency
during training, where batches of observations are periodically
sampled from a replay buffer and processed through the pre-
trained VLM.

Extensive experiments in the CARLA simulator demon-
strate that VLM-RL outperforms state-of-the-art baselines,
achieving a 10.5% reduction in collision rate, a 104.6%
increase in route completion rate, and robust generalization
to unseen driving scenarios. This approach provides a more
balanced and comprehensive learning signal compared to
existing methods that rely solely on positive or negative goals,
enabling the agent to better navigate the complex trade-offs
between safety and efficiency in autonomous driving.

Through Sky-Drive’s human-AI collaboration mechanism,
VLM-RL can seamlessly integrate human feedback to refine
contrasting language goals and enhance semantic reward sig-
nals, thereby improving the safety performance of autonomous
systems while maintaining their efficiency in complex traffic
scenarios.

To further validate the effectiveness of VLM-RL, we con-
duct comprehensive testing evaluations across 10 predefined
routes and compare the performance with baseline methods.
The route completion metric represents the average route
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TABLE IV
PERFORMANCE COMPARISON WITH BASELINES DURING TESTING. MEAN

AND STANDARD DEVIATION OVER 3 SEEDS. THE BEST RESULTS ARE
MARKED IN BOLD.

Model AS ↑ RC ↑ TD ↑ CS ↓ SR ↑

LLM-based Reward Methods

Revolve 18.4 ± 0.03 0.92 ± 0.11 1915.3 ± 248.3 1.53 ± 2.16 0.83 ± 0.24

Revolve-auto 17.2 ± 0.76 0.80 ± 0.06 1539.6 ± 147.5 1.65 ± 0.28 0.63 ± 0.05

VLM-based Reward Methods

VLM-SR 0.53 ± 0.27 0.02 ± 0.00 47.9 ± 9.2 0.18 ± 0.25 0.0 ± 0.0

RoboCLIP 0.44 ± 0.05 0.07 ± 0.03 146.3 ± 62.3 1.05 ± 0.58 0.0 ± 0.0

VLM-RM 0.20 ± 0.05 0.02 ± 0.01 35.9 ± 25.8 0.003 ± 0.005 0.0 ± 0.0

LORD 0.17 ± 0.08 0.02 ± 0.02 45.1 ± 57.1 0.02 ± 0.02 0.0 ± 0.0

LORD-Speed 18.9 ± 0.36 0.87 ± 0.08 1783.4 ± 172.8 2.80 ± 1.16 0.67 ± 0.05

VLM-RL (ours) 19.3 ± 1.29 0.97 ± 0.03 2028.2 ± 96.6 0.02 ± 0.03 0.93 ± 0.04

completion rates during each evaluation episode. The testing
results in Tab. IV demonstrate significant advantages of our
approach compared to the baselines.

LLM-based approaches demonstrate competitive perfor-
mance during testing, with Revolve achieving a success rate
of 0.83 and route completion of 0.92. However, their colli-
sion speeds of 1.53 km/h and 1.65 km/h indicate persistent
safety issues. Most VLM-based methods, including VLM-SR,
RoboCLIP, VLM-RM, and LORD, exhibit highly conservative
behaviors with route completion rates below 0.07 and success
rates of 0.0. LORD-Speed shows significantly improved effi-
ciency metrics but records the highest collision speed at 2.80
km/h among all methods.

In contrast, VLM-RL achieves superior performance across
all key metrics during testing. It maintains a high average
speed of 19.3 km/h while recording a low collision speed
of 0.02 km/h, matching the safety level of the most con-
servative approaches. Most notably, VLM-RL achieves the
highest success rate of 0.93 and route completion of 0.97,
along with the longest total driving distance of 2028.2m. These
results demonstrate that our method not only learns more
effective driving policies but also exhibits better generalization
to testing scenarios. The significant improvements in both
efficiency and safety metrics validate the effectiveness of
our CLG-based and hierarchical reward design in providing
comprehensive and well-balanced learning signals for safe
driving tasks.

E. CurricuVLM

Sky-Drive’s human-AI collaboration mechanism also sup-
ports the CurricuVLM framework, as shown in Fig. 4(d).
CurricuVLM leverages Vision-Language Models (VLMs) to
enable personalized safety-critical curriculum learning for
autonomous driving agents.

The core innovation of CurricuVLM lies in its ability
to bridge the gap between scenario generation and driving

policy learning. By continuously monitoring agent behavior
in various driving scenarios, CurricuVLM employs VLMs
to analyze safety-critical events and identify recurring weak-
nesses. When unsafe situations occur, the framework generates
comprehensive visual descriptions that are processed through
a specialized GPT-4o-based analyzer. This two-stage behavior
analysis pipeline combines VLMs’ visual understanding capa-
bilities with GPT-4o’s reasoning abilities to assess the agent’s
current capabilities and limitations.

Based on this analysis, CurricuVLM formulates the scenario
generation as a conditional trajectory generation problem,
which can be expressed as:

P (Y AV , Y BV |I,X) (8)

where X represents historical information including the HD
map and past states of both AV and background vehicles,
Y AV and Y BV denote their future trajectories, and I contains
the behavioral insights from VLM analysis. The framework
optimizes background vehicle trajectories by finding:

Y BV ∗ = argmax
Y BV

P (Y BV |X)
∑

Y AV ∼Y(π)

P (Y AV |Y BV , X)·P (I|Y AV , Y BV )

(9)
This approach allows CurricuVLM to create diverse and

realistic safety-critical scenarios that specifically target the
agent’s identified weaknesses, enabling more effective closed-
loop training.

Experimental results in Sky-Drive demonstrate that Cur-
ricuVLM significantly outperforms state-of-the-art methods
across both regular and safety-critical scenarios. In safety-
critical testing, CurricuVLM achieves an episode reward of
48.9 compared to 42.5 for CAT and 39.3 for CLIC, while
maintaining a lower crash rate of 25.1% versus 32.1% and
26.2% respectively. The framework shows strong compatibility
with various RL algorithms including TD3, PPO, and SAC,
demonstrating its potential as a general approach for enhancing
autonomous driving systems.

Through Sky-Drive’s integration, CurricuVLM enables
more effective learning from safety-critical scenarios by dy-
namically generating personalized curricula that adapt to each
agent’s evolving capabilities, ultimately improving safety and
performance in autonomous driving systems.

F. Talk2Traffic

Sky-Drive’s human-AI collaboration mechanism also in-
corporates the Talk2Traffic framework, as shown in Fig.
4(f). Talk2Traffic leverages multimodal large language models
(MLLMs) to enable intuitive and editable traffic scenario
generation through natural language instructions, speech com-
mands, and sketch-based inputs.

The core innovation of Talk2Traffic lies in its ability to
bridge the gap between human designers’ intuitive expressions
and executable simulation scenarios. The framework processes
diverse multimodal inputs through a specialized interpreter
that extracts structured scene representations. These repre-
sentations are then transformed into executable Scenic code
using a retrieval-augmented generation (RAG) approach with
a curated database of verified code snippets.
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Talk2Traffic’s multimodal instruction interpreter can be for-
mulated as:

z = MLLM(p, l, s), (10)

where p is the task description, l represents textual or speech
instructions, and s denotes sketch-based inputs. The extracted
structured representation z captures essential scenario com-
ponents including map configuration, weather conditions, and
agent specifications.

To ensure high-quality code generation, Talk2Traffic em-
ploys a comprehensive database of description-snippet pairs:

D = {(dj , cj)|j ∈ {1, . . . ,m}}, (11)

where dj represents natural language descriptions and cj de-
notes corresponding Scenic code snippets. For each component
of the structured representation, the framework retrieves rele-
vant snippets based on semantic similarity computed through:

sim(sqi , sj) =
sqi · sj

||sqi || · ||sj ||
, (12)

where sqi and sj are embeddings of the query and database
descriptions respectively.

A distinguishing feature of Talk2Traffic is its human feed-
back guidance mechanism that enables iterative refinement of
generated scenarios:

St+1 = MLLM(prefine,Ht,St, ft), (13)

where St represents the scenario at iteration t, Ht is the
conversation history, and ft denotes user feedback. This in-
teractive approach allows users to progressively align scenar-
ios with specific testing objectives through natural language
guidance.

Experimental results demonstrate Talk2Traffic’s effective-
ness in generating challenging traffic scenarios. The frame-
work achieves state-of-the-art performance with an average
collision rate of 0.877 across diverse scenario types, surpassing
the second-best method by 4.6%. Talk2Traffic particularly
excels in complex multi-agent interactions such as Red Light
Running (0.900) and Unprotected Left Turn (0.833) scenarios,
demonstrating its capability to create sophisticated testing
environments for autonomous driving systems.

Through this integration, Sky-Drive’s AIHM framework
delivers on its promise of personalized driver training, using
Talk2Traffic to dynamically generate the challenging scenarios
needed to systematically improve driver performance across
diverse traffic conditions and driving situations.

G. Accident Data Replay Framework

Sky-Drive implements an accident data replay framework
that enables systematic reconstruction and analysis of real-
world traffic accidents within its simulation environment. This
capability addresses a critical need in autonomous driving
development: understanding and learning from actual acci-
dent scenarios while maintaining safety and reproducibility.
The framework employs a comprehensive technical pipeline
centered around CenterTrack [50], an advanced detection and
tracking algorithm that processes accident video footage to ex-
tract detailed object trajectories. Sky-Drive’s integration with

(a)              Text

The traffic at the 
intersection with 
traffic lights flows in 
an orderly manner, 
with cars stopping 
and moving adhere 
to the changing 
signals.

(b)              Audio

Two slow moving 
motorcycles blocked 
the ego vehicle from 
moving forward 
under a clear dusk 
sky. The ego vehicle 
has to brake to 
ensure safety.

(c)            Sketch

Fig. 5. Qualitative examples. Each scenario is downsampled to four frames
for visualisation.

CARLA transforms these trajectories into precise 3D recon-
structions that capture the relative positions and movements
of all vehicles involved in the incident. The platform’s high-
fidelity simulation capabilities ensure accurate reproduction
of critical environmental factors, including road conditions,
vehicle dynamics, and interaction patterns.

To ensure reconstruction accuracy, as shown in Fig. 4
(f), Sky-Drive implements a sophisticated validation process.
The framework employs procedural matching algorithms to
identify appropriate simulation maps that closely mirror the
original accident conditions. A quality assessment module
evaluates the fidelity of each reconstructed scenario, automat-
ically flagging cases that require additional refinement. While
the platform incorporates unsupervised domain adaptation
techniques to enhance trajectory extraction accuracy, it also
provides tools for manual refinement when needed, ensuring
the highest possible reconstruction quality.

The implementation of accident data replay in Sky-Drive
enables multiple critical applications in autonomous driving
research and development. The framework provides a con-
trolled environment for detailed analysis of accident causation,
supporting the development of enhanced safety systems and
collision avoidance algorithms. It serves as a valuable resource
for training RL agents on real-world edge cases, significantly
improving their ability to handle critical scenarios. Addi-
tionally, the platform’s high-fidelity reconstructions support
regulatory compliance and accident investigation processes.
The framework’s integration with Sky-Drive’s broader simu-
lation capabilities enables systematic testing of autonomous
driving systems against a comprehensive database of real-
world accident scenarios, advancing the development of safer
and more robust autonomous vehicles.
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VI. FUTURE ENHANCEMENTS

A. Foundation Models

Sky-Drive implements a comprehensive LLM-based system
that enables personalized autonomous driving through natural
language interactions. As shown in Fig. 4 (g), the platform
integrates advanced language understanding with perception
and navigation capabilities to enhance human-vehicle com-
munication in complex driving scenarios.

The implementation leverages a multimodal architecture
consisting of three core components integrated within Sky-
Drive’s simulation environment. A CLIP-based visual encoder
processes real-time camera feeds to extract rich perceptual
features. These features are seamlessly projected into the
language decoder’s embedding space, enabling a unified repre-
sentation of visual and linguistic information [51]. A dedicated
route planning module utilizes Sky-Drive’s mapping capabil-
ities to generate executable navigation commands, while a
Vicuna-7B language model coordinates visual inputs, natural
language instructions, and historical actions to produce appro-
priate driving responses.

To ensure robust performance, Sky-Drive employs a three-
stage training pipeline for the LLM system. The first stage
utilizes the BDD-X dataset to align visual and linguistic rep-
resentations through careful tuning of LLaVA-7B’s projection
layers [52]. The second stage enhances command understand-
ing through LoRA-based fine-tuning on the SDN dataset,
enabling the system to interpret diverse human intentions.
The final stage incorporates Sky-Drive’s simulated perceptual
data to refine real-world decision-making capabilities. Through
this implementation, Sky-Drive establishes a foundation for
personalized autonomous driving that seamlessly integrates
natural language interaction with robust navigation capabili-
ties.

Foundation models are transforming autonomous driving
simulation by serving as sophisticated “traffic brains.” These
models enhance Sky-Drive’s simulation capabilities through
LLM/VLM-guided decision-making, personalized driving be-
havior, adaptive control, and predictive collision detection,
leveraging their ability to process both visual and textual inputs
contextually. While traditional driving simulators rely on deter-
ministic rule-based approaches and manually defined policies,
Sky-Drive’s integration of foundation models provides the
necessary adaptability and contextual awareness for modern
autonomous driving systems. This advancement transforms
Sky-Drive from a conventional testing environment into an
advanced platform capable of equipping AVs with sophis-
ticated LLM/VLM-based assistance and end-to-end driving
capabilities.

Although general-purpose models like Qwen [53], GPT-4
[54], and Llama [55] demonstrate remarkable conversational
abilities, they require specialized adaptation for driving appli-
cations. Sky-Drive addresses this limitation through targeted
fine-tuning within the autonomous driving domain, empha-
sizing dynamic scenario adaptation, hierarchical reasoning in
complex traffic situations, and multitask capabilities. These
capabilities include generating safe driving actions (steering,
throttle, and braking) and predicting critical safety metrics

such as Time-to-Collision (TTC). The platform implements a
comprehensive three-stage approach: initially leveraging pre-
trained VLMs such as Qwen2-VL-7B [53] for visual-linguistic
understanding, then fine-tuning these models on specialized
autonomous driving datasets including LMDrive [56], CCD
[57], DoTA [58], and DriveCoT [59]. These datasets pro-
vide diverse training signals across navigation states, crash
scenarios, and multi-modal driving data. Finally, the refined
models are integrated into Sky-Drive’s simulation pipeline, in-
corporating advanced techniques such as safety-critical dataset
balancing, computational efficiency through quantization, and
RL for performance optimization.

This integration of foundation models establishes Sky-Drive
as an intelligent and scalable platform for developing safe
and efficient driving policies. By positioning these models
at the core of its simulation systems, Sky-Drive creates a
robust foundation for advancing autonomous driving technolo-
gies. Future developments will incorporate more sophisticated
foundation models such as Qwen-QVQ-72B [60] to further
enhance reasoning capabilities, safety features, and human-
like decision-making processes.

1) Foundation Models Integration: Despite the integration
of diverse sensing modalities—including VR-based eye track-
ing, voice interaction, facial expression recognition, physiolog-
ical signal monitoring, and realistic steering wheel input—it
must be acknowledged that Sky-Drive has not yet fully re-
alized multimodal intent fusion and decision reasoning. One
of our key future directions is to leverage large language
models (LLMs) and vision-language models (VLMs) as core
integration mechanisms. These models enable cross-modal
reasoning by understanding the relationships between physio-
logical signals, eye movement patterns, verbal expressions, and
physical control inputs to interpret complex human behavior.

For instance, Sky-Drive can detect a pattern in which
elevated heart rate, downward gaze direction, and a brief
comment such as “too fast” collectively indicate discomfort
with vehicle acceleration. In another case, a more nuanced
verbal expression—“I feel a bit uneasy because the car
accelerates too quickly”—can be semantically aligned with
similar physiological and behavioral cues. LLMs reason over
these varied expressions to infer underlying preferences, while
simultaneously associating facial tension or stress with corre-
sponding biometric signals.

By performing this type of integrated interpretation in en-
vironmental context—including factors such as traffic density,
road geometry, and interactions with other road users—Sky-
Drive can construct rich behavioral profiles that go far beyond
what any single sensing modality could provide. This holistic
understanding will empower future iterations of the HAIM and
AIHM frameworks to adapt more intelligently and personally
to each driver, enabling the development of socially-aware,
trustworthy, and human-centered autonomous driving systems.

B. Hardware-in-the-Loop
Sky-Drive implements a HIL testing framework that seam-

lessly bridges simulation and real-world deployment through
ROS integration. This framework enables rigorous valida-
tion of autonomous driving algorithms on physical platforms
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while maintaining stringent safety and reliability standards
throughout the development process. At the core of the HIL
system lies a testbed vehicle, a Ford E-Transit electric van
retrofitted with complete autonomous driving capabilities. The
vehicle features a comprehensive sensor array including Li-
DAR systems, radar units, high-resolution cameras, and OxTS
navigation units. Advanced drive-by-wire control platforms
integrate seamlessly with industrial-grade computing systems,
facilitating precise vehicle control and real-time data acquisi-
tion. The vehicle software architecture leverages established
ROS-based open-source packages enhanced with Sky-Drive’s
proprietary algorithms for expanded functionality.

To facilitate comprehensive testing capabilities, Sky-Drive
has developed innovative portable roadside infrastructure units
equipped with traffic signaling systems, regulatory signage,
and advanced sensing capabilities including cameras and
LiDAR arrays. These units serve dual purposes: enabling
systematic validation of vehicle-to-infrastructure (V2I) com-
munication protocols and supporting cooperative perception
algorithm development across diverse environmental condi-
tions [3]. The integration of these roadside units with the
vehicle fleet establishes a comprehensive testing ecosystem
for CAV technologies.

The HIL framework maintains tight integration with Sky-
Drive’s digital twin environment, enabling fluid transitions
between simulation and physical testing phases. This in-
tegrated approach allows development teams to thoroughly
validate algorithms in simulation before physical deployment,
substantially reducing development cycles while maintaining
safety standards. The system supports exhaustive testing of
vehicle-to-vehicle (V2V) and V2I communication protocols,
multi-sensor fusion algorithms, and autonomous driving ca-
pabilities, all while adhering to rigorous safety and reliability
requirements throughout the development process.

The HIL framework also establishes a solid foundation
for developing and testing teleoperated driving. Teleoperated
driving allows humans (teleoperators) to remotely control
vehicles, particularly in challenging scenarios, complementing
fully/highly autonomous solutions. It is one of the impor-
tant use cases of vehicle-to-everything (V2X) communica-
tion, specified in the 3GPP standards [61]. Sky-Drive’s ROS
integration enables wireless connectivity between its testbed
vehicle and human-in-the-loop simulation platform—operated
by a teleoperator—via cellular or satellite networks, e.g.,
5G. Considering the wild fluctuations of network bandwidth,
round-trip time (RTT), jitter time, and packet loss under
driving conditions of 5G [62], Sky-Drive facilitates the col-
laboration between the vehicle and the simulation platform
to dynamically decide what data (RGB images, LiDAR point
cloud, and/or their pre-processed data) to transmit and how to
transmit them to meet the end-to-end latency requirement for
the teleoperation, i.e., below 100 milliseconds [63].

VII. CONCLUSIONS

This paper presented Sky-Drive, a comprehensive simu-
lation platform that integrates virtual reality (VR), multi-
agent interactions, and human-centered AI approaches for

multi-agent traffic simulation and human-centered autonomous
agent research. The key innovations include: a digital twin
framework for high-fidelity virtual replication of transporta-
tion systems, a distributed multi-agent architecture enabling
synchronized cross-terminal simulation, a multi-modal human-
in-the-loop framework for capturing rich behavioral data, a
novel human-AI bi-directional mentor mechanism for effec-
tive knowledge exchange, foundation models integration for
enhanced human-machine collaboration, and a hardware-in-
the-loop module for direct algorithm validation.

Looking forward, several promising directions exist for
further development of Sky-Drive. First, improving computa-
tional efficiency remains a priority, particularly in processing
real-time interactions among multiple agents and handling
large-scale traffic scenarios. Second, while the current im-
plementation successfully integrates foundation models, ex-
panding their capabilities to handle more complex driving
scenarios and environmental conditions could further enhance
the platform’s utility. Third, the platform could benefit from
incorporating more sophisticated physics models and envi-
ronmental simulations to improve fidelity in adverse weather
conditions and complex urban environments.

Additionally, future work should focus on expanding Sky-
Drive’s capabilities in several key areas: enhancing the plat-
form’s ability to generate and validate edge cases for au-
tonomous driving, developing more sophisticated methods for
knowledge transfer between human drivers and AI systems,
and improving the integration of real-world traffic data into
simulation scenarios. Through its innovative integration of
multiple cutting-edge technologies, Sky-Drive provides a ro-
bust foundation for advancing the field of autonomous driving
while maintaining a strong focus on human-centered design
and safety considerations. As autonomous driving technology
continues to evolve, Sky-Drive will play an increasingly cru-
cial role in ensuring the safety, reliability, and effectiveness of
next-generation transportation systems.
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Proc. Eur. Conf. Comput. Vis. Springer, 2020, pp. 474–490.

[51] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Kr-
ishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A multimodal
dataset for autonomous driving,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., 2020, pp. 11 621–11 631.

[52] J. Kim, A. Rohrbach, T. Darrell, J. Canny, and Z. Akata, “Textual
explanations for self-driving vehicles,” Proc. Eur. Conf. Comput. Vis.,
2018.

[53] P. Wang, S. Bai, S. Tan, S. Wang, Z. Fan, J. Bai, K. Chen, X. Liu,
J. Wang, W. Ge, Y. Fan, K. Dang, M. Du, X. Ren, R. Men, D. Liu,
C. Zhou, J. Zhou, and J. Lin, “Qwen2-vl: Enhancing vision-language
model’s perception of the world at any resolution,” arXiv preprint
arXiv:2409.12191, 2024.

[54] OpenAI, “Gpt-4 technical report,” arXiv preprint arXiv:2303.08774,
2023.

[55] A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman,
A. Mathur, A. Schelten, A. Yang, A. Fan et al., “The llama 3 herd of
models,” arXiv preprint arXiv:2407.21783, 2024.

[56] H. Shao, Y. Hu, L. Wang, G. Song, S. L. Waslander, Y. Liu, and H. Li,
“Lmdrive: Closed-loop end-to-end driving with large language models,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2024, pp.
15 120–15 130.

https://github.com/eleurent/highway-env
https://www.carsim.com
https://www.carsim.com
https://ipg-automotive.com/products-services/simulation-software/carmaker/
https://ipg-automotive.com/products-services/simulation-software/carmaker/
https://www.nvidia.com/en-us/self-driving-cars/
https://rfpro.com
https://www.ptvgroup.com/en/solutions/ptv-vissim/
https://www.ptvgroup.com/en/solutions/ptv-vissim/
https://sourceforge.net/projects/torcs/
https://gazebosim.org/
https://www.mathworks.com/products/vehicle-dynamics.html
https://www.nvidia.com/en-us/self-driving-cars/drive-constellation/
https://www.nvidia.com/en-us/self-driving-cars/drive-constellation/
https://www.appliedintuition.com
https://www.morai.ai
https://wayve.ai/thinking/lingo-natural-language-autonomous-driving/
https://wayve.ai/thinking/lingo-natural-language-autonomous-driving/


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 17

[57] W. Bao, Q. Yu, and Y. Kong, “Uncertainty-based traffic accident
anticipation with spatio-temporal relational learning,” in Proc. ACM
Multimedia Conf., May 2020.

[58] Y. Yao, X. Wang, M. Xu, Z. Pu, Y. Wang, E. Atkins, and D. Crandall,
“Dota: unsupervised detection of traffic anomaly in driving videos,”
IEEE Trans. Pattern Anal. Mach. Intell., 2022.

[59] T. Wang, E. Xie, R. Chu, Z. Li, and P. Luo, “Drivecot: Integrating
chain-of-thought reasoning with end-to-end driving,” arXiv preprint
arXiv:2403.16996, 2024.

[60] Q. Team, “Qvq: To see the world with wisdom,” December 2024.
[Online]. Available: https://qwenlm.github.io/blog/qvq-72b-preview/

[61] “Study on enhancement of 3GPP Support for 5G V2X Services,” 3rd
Generation Partnership Project (3GPP), Technical Report TR 22.886,
2020, available at: https://www.3gpp.org/ftp/Specs/archive/22 series/22.
886/.

[62] M. Ghoshal, I. Khan, Z. J. Kong, P. Dinh, J. Meng, Y. C. Hu, and
D. Koutsonikolas, “Performance of cellular networks on the wheels,”
in Proceedings of the 2023 ACM on Internet Measurement Conference,
2023, pp. 678–695.

[63] A. Podhurst, “Autonomous vehicle teleoperation: Is one network enough
for remote driving?” 2025.

https://qwenlm.github.io/blog/qvq-72b-preview/
https://www.3gpp.org/ftp/Specs/archive/22_series/22.886/
https://www.3gpp.org/ftp/Specs/archive/22_series/22.886/

	Introduction
	Related Works
	Driving Simulators
	Human–AI Collaboration Environments

	Sky-Drive Workflow
	Overview
	Workflow
	Scenario Generation & Data Collection
	Simulation & Algorithm Training
	Hardware Integration & Testing


	Sky-Drive Features
	Distributed Multi-agent Architecture
	System Architecture
	Communication Infrastructure
	Real-time Monitoring Platform

	Multi-modal Human-in-the-loop Framework
	Eye Tracking
	Voice Interaction
	Facial Expression Recognition
	Physiological Signal Monitoring
	Steer Wheel

	Human-AI Collaboration Mechanism
	Human as AI Mentor
	AI as Human Mentor

	Digital Twin Framework

	Sky-Drive Application Case
	VR-based AV-VRU Interaction
	HAIM-based Deep Reinforcement Learning
	Physics-enhanced Reinforcement Learning with Human Feedback 
	VLM-RL
	CurricuVLM
	Talk2Traffic
	Accident Data Replay Framework

	Future Enhancements
	Foundation Models
	Foundation Models Integration

	Hardware-in-the-Loop

	Conclusions
	References

